

Code No: R22D2110 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

M.Tech I Year II Semester Regular/Supplementary Examinations, August 2024 Thermal and Nuclear Power Plants

(TE)										
Roll No										

Time: 3 hours

Max. Marks: 60

Note: This question paper contains two parts A and B Part A is compulsory which carries 10 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

		<u>PART-A (10 Marks)</u>	BCLL	CO(s)	Marks
		<u>(Write all answers of this part at one place)</u>			
1	А	How is dust collectors classified?	L1	CO-I	[1M]
	В	What is Volumetric analysis?	L1	CO-I	[1M]
	С	State the limitations of gas turbines.	L4	CO-II	[1M]
	D	Write a short note on fuels used for gas turbines.	L2	CO-II	[1M]
	E	What is a chain reaction?	L2	CO-III	[1M]
	F	Write a short note on 'Fertile materials'.	L2	CO-III	[1M]
	G	Define the Load factor.	L1	CO-IV	[1M]
	Η	What do you mean by depreciation?	L3	CO-IV	[1M]
	Ι	How are instruments classified?	L1	CO-V	[1M]
	J	What is the difference between gauge pressure and	L4	CO-V	[1M]
		absolute pressure?			
		<u>PART-B (50 Marks)</u>			
		<u>SECTION-I</u>			
2	А	Describe the general layout of a modern coal-fired steam	L2	CO-I	[5M]
		power plant.			
	В	Explain the types of power plants.	L2	CO-I	[5M]
		OR			
3	А	Explain the role of high-pressure, intermediate-pressure,	L2	CO-I	[5M]
		and low-pressure turbines.			
	В	Describe the function and types of cooling towers used	L2	CO-I	[5M]
		in a steam power plant.			
		<u>SECTION-II</u>			
4	А	Explain the concept of an IGCC power plant.	L2	CO-II	[5M]
	В	Discuss its advantages over conventional power	L3	CO-II	[5M]
		generation methods.			
		OR			
5	А	Discuss the importance of waste heat recovery in gas	L3	CO-II	[5M]
		turbine power plants.			
	В	Describe the typical methods used for waste heat	L3	CO-II	[5M]
		recovery and their benefits.			_

		<u>SECTION-III</u>			
6	А	Explain the basic principles of nuclear physics that	L3	CO-III	[5M]
		underlie nuclear power generation.			
	В	Describe the main components and working principle of	L3	CO-III	[5M]
		a nuclear reactor.			
		OR			
7	А	Explain briefly the Prompt-fission gamma rays.	L3	CO-III	[5M]
	В	Explain briefly the Fission-product-decay gamma rays. SECTION-IV	L2	CO-III	[5M]
8	А	Explain briefly the following :(i) Capital or fixed cost	L2	CO-IV	[5M]
		(<i>ii</i>) Operational cost.			
	В	Explain the performance and operating characteristics of	L3	CO-IV	[5M]
		power plant.			
		OR			
9	А	Explain briefly the following :(i) Load curve (ii) Load	L3	CO-IV	[5M]
		duration curve.			
	В	List the factors which should be considered while	L2	CO-IV	[5M]
		designing a power plant.			
		SECTION-V			
10		Explain briefly the following: (i) Bimetallic	L3	CO-V	[10M]
		thermometers (ii) Liquid filled thermometers (iii) Gas-			
		filled thermometers.			
		OR			
11	Α	Describe briefly the following pressure gauges: (i)	L2	CO-V	[5M]
		Bourdon tube pressure gauge (<i>ii</i>) Diaphragm gauge.			
	В	Describe the primary methods used to control the	L3	CO-V	[5M]
		emissions of pollutants from combustion gases.			_

Code No: R22D2109 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

M.Tech I Year II Semester Regular/Supplementary Examinations, August 2024 Advanced Heat and Mass Transfer

Heat and Mass

		(1	L)					
Roll No								
						Max	Manly	
						viax	. Warks	6 T - 1

Time: 3 hours

Note: This question paper contains two parts A and B

Part A is compulsory which carries 10 marks and Answer all questions.

Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

		PART-A (10 Marks)	BCLL	CO(s)	Marks
		(Write all answers of this part at one place)			
1	А	State Fourier's Law of conduction.?	L1	CO-I	[1M]
	В	How the heat transfer from surface is increased by using Fins?	L2	CO-I	[1M]
	С	How is thermal boundary layer thickness defined?	L2	CO-II	[1M]
	D	State the fundamental equation used in finite difference methods to solve steady-state 1D heat conduction problems.	L2	CO-II	[1M]
	Е	What is meant by laminar flow and turbulent flow?	L2	CO-III	[1M]
	F	The properties of mercury at 300 K are: density = 13529 kg/m^3 , specific heat at constant pressure = 0.1393 kJ/kg-K , dynamic viscosity = $0.1523 \times 10-2 \text{ N.s/m}^2$ and thermal conductivity = 8.540 W/mK. The Prandtl number of the mercury at 300 K is:	L3	CO-III	[1 M]
	G	What is the boundary layer thickness in natural convection? How does it vary with Rayleigh number?	L1	CO-IV	[1M]
	Н	What is critical heat flux (CHF) in boiling? Explain its significance in heat transfer applications.	L1	CO-IV	[1M]
	Ι	What is black body and Gray body?	L1	CO-V	[1M]
	J	Briefly explain the Reynolds analogy between heat and mass transfer. What physical similarities does it exploit?	L1	CO-V	[1M]
		SECTION-I			
2		Derive the governing equation for heat conduction in cartesean co-ordinate system.	L2	CO-I	[10M]
3	А	What is lumped capacity? Derive an expression for temperature as a function of time in a lumped heat capacity system.	L2	CO-I	[5M]
	В	An Aluminium sphere weighing 5.5kg and initially at a temperature of 290°C is suddenly immersed in a fluid at 15°C. The convective heat transfer coefficient is 58 W/m-K. Estimate the time required to cool the aluminium to 95°C ,using the lumped capacity method of analysis.	L3	CO-I	[5M]

		<u>SECTION-II</u>			
4	Α	Derive the finite difference equation for steady-state heat conduction in one dimension using central difference approximation.	L2	CO-II	[5M]
	В	Derive the continuity and momentum equations for incompressible fluid flow.	L2	CO-II	[5M]
5	А	Solve the steady-state heat conduction equation in a rod of length L with boundary temperatures $T(0)=100^{\circ}$ C and $T(L)=50^{\circ}$ C using the finite difference method.	L3	CO-II	[5M]
	В	Derive the energy equation for forced convection SECTION-III		CO-II	[5M]
6	A	Air at 20° C is flowing along a heated plate at 134° C at a velocity of 3 m/s. The plate is 2 m long and 1.5 m wide. Calculate the thickness of the hydrodynamic boundary layer and the skin friction coefficient at 40 cm from the leading edge of the plate. The kinematic viscosity of the air at 20° C may be taken as $15.06 \times 10^{-6} \text{ m}^2/\text{s}$.	L3	CO-III	[5M]
	В	A Horizontal plate of 800 mm long, 70mm wide is maintained at a temperature of 140°C in a large tank of full of water at 60°C. Determine the heat loss from the upper side of the plate. OR	L3	CO-III	[5M]
7	А	Explain the concept of velocity and thermal boundary layers for a flow over flat plate using neat sketches.	L2	CO-III	[5M]
	В	A vertical cylinder 1.6 m high and 180mm in diameter is maintained at 100°C in an atmosphere environment of 20°C. Calculate heat loss by free convection from the surface of the cylinder. Assume properties of air at mean temperature as $\rho = 1.06 \text{ kg/m3}$, $v = 18.97 \times 10^{-6} \text{ m}^2/\text{s}$, $Cp = 1.004 \text{ kJ/kg}$ °C and k = 0.1042 kJ/m°C	L3	CO-III	[5M]
8	А	Compare film condensation correlations for different geometries	L2	CO-IV	[5M]
	В	A wire of 1.2mm diameter and 200 mm length is submerged horizontally in water at 7 bar. The wire carries a current of 135 A with an applied voltage of 2.18 V. If the surface of the wire is maintained at 200°C, calculate i) The heat flux ii) The boiling heat transfer coefficient OR	L3	CO-IV	[5M]
9	А	Explain the Boussinesq approximation in the context of free convection. What are its assumptions and limitations?	L2	CO-IV	[5M]
	В	Water at atmospheric pressure is to be boiled in polished copper pan. The diameter of the pan is 350 mm and is kept at 115°C. Calculate the following i) Power of burner ii) Rate of evaporation in kg/h iii) Critical Heat flux	L3	CO-IV	[5M]

SECTION-V

Determine the view factors F_{13} and F_{31} between the surfaces 110 А L3 CO-V [5M] and 3 as shown below

- В Explain the Reynolds analogy for heat and mass transfer. How L2 CO-V [5M] can it be used to estimate the mass transfer coefficient from the heat transfer coefficient? OR

 - Distinguish briefly between A black body and gray body i)

11

А

- Specular and diffuse surface ii)
- В Two discs of dia 200 mm each are arranged in two parallel planes 400 mm apart. The temperature of the first disc is 500°C and that of the second one is 300°C. Determine the radiating heat transfer between them, if they are i) black ii) gray with emissivities 0.3 and 0.5 respectively.

- L2 CO-V [**3M**] L3
 - [**3M**] CO-V [4M]

R22

Code No: R22D2111 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India)

M.Tech I Year II Semester Regular/Supplementary Examinations, August 2024

(TE)										
Roll No										

Time: 3 hours

Max. Marks: 60

Note: This question paper contains two parts A and B Part A is compulsory which carries 10 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

		<u>PART-A (10 Marks)</u>	BCLL	CO(s)	Marks
		<u>(Write all answers of this part at one place)</u>			
1	А	What are the functional areas in a process industry?	L1	CO-I	[1M]
	В	What is organizing in energy management?	L1	CO-I	[1M]
	С	What is an energy audit?	L1	CO-II	[1M]
	D	What are energy flow networks?	L1	CO-II	[1M]
	Е	What are budget considerations?	L1	CO-III	[1M]
	F	What is a risk matrix?	L1	CO-III	[1M]
	G	What is present worth in project evaluation?	L1	CO-IV	[1M]
	Н	Who uses the investor's rate of return?	L1	CO-IV	[1M]
	Ι	What is the purpose of thermal storage systems?	L1	CO-V	[1M]
	J	How does a wind turbine work?	L2	CO-V	[1M]
		<u>PART-B (50 Marks)</u>			
		<u>SECTION-I</u>			
2		What are the fundamental principles of energy	L4	CO-I	[10M]
		management, and how do they impact the overall			
		performance of an organization in terms of cost savings,			
		environmental sustainability, and operational efficiency?			
		OR			
3	А	What is the initiating phase of energy management, and	L2	CO-I	[5M]
		how does it involve setting goals, identifying			
		opportunities, and developing a roadmap for energy			
		management initiatives?			
	В	What are the long-term goals and objectives of an	L4	CO-I	[5M]
		energy management program, and how do they			
		contribute to the achievement of organizational			
		sustainability and energy efficiency?			
		<u>SECTION-II</u>			
4	А	What are the basic energy concepts that underlie energy	L2	CO-II	[5M]
		auditing, including energy units, energy conversion, and			
		energy efficiency, and how do they inform the energy			
		auditing process?			
	В	What are the technologies for energy conservation,	L2	CO-II	[5M]

		including energy-efficient lighting, HVAC systems, and insulation, and how do they contribute to reducing energy consumption and greenhouse gas emissions? OR			
5		How does design for conservation of energy materials involve the selection and specification of materials that minimize energy consumption and waste, and what are the key considerations in this process? SECTION-III	L4	CO-II	[10M]
6	А	What is the scope of economic analysis in the context of investment decision-making, and how does it help in evaluating the feasibility of a project?	L4	CO-III	[5M]
	В	What are the different types of depreciation methods, including straight-line, declining balance, and units-of- production, and how do they impact the financial performance of a project?	L2	CO-III	[5M]
7		What is the difference between budgeting and forecasting in economic analysis, and how do they influence investment decisions, including the preparation of a budget and a forecast? SECTION-IV	L4	CO-III	[10M]
8		What are the underlying principles and assumptions of the payback method of evaluating projects, and how does it differ from other methods of evaluation in terms of its approach to calculating the viability of a project? OR	L4	CO-IV	[10M]
9	А	How do the different methods of evaluation account for the time value of money, and what are the implications of ignoring this concept in project evaluation?	L5	CO-IV	[5M]
	В	What are the limitations of using a single method of evaluation, and how can project managers and investors use a combination of methods to get a more comprehensive view of a project's viability? SECTION-V	L5	CO-IV	[5M]
10		What are the different types of devices used for solar energy collection, and how do they vary in terms of their efficiency, cost, and application in different environments and industries?	L2	CO-V	[10M]
11	A	Discuss the factors that influence the availability of wind energy in a particular location. How do geographical and meteorological factors affect wind energy potential?	L5	CO-V	[5M]
	В	Compare and contrast the different types of wind energy devices What are the primary considerations when choosing a type of wind turbine for a specific application?	L5	CO-V	[5M]

R22

Code No: R22D2114 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India)

M.Tech I Year II Semester Regular/Supplementary Examinations, August 2024 **Industrial Refrigeration Systems**

(TE)										
Roll No										

Time: 3 hours

Note: This question paper contains two parts A and B

Max. Marks: 60

Part A is compulsory which carries 10 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions,

Choosing ONE Question from each SECTION and each Question carries 10 marks.

		PART-A (10 Marks)	BCLL	CO(s)	Marks
		(Write all answers of this part at one place)			
1	А	What is refrigeration?	L1	CO-I	[1M]
	В	Differentiate between C.O.P. and efficiency.	L3	CO-I	[1M]
	С	Where is the reciprocating compressor mostly suitable?	L4	CO-II	[1M]
	D	Define a screw compressor.	L2	CO-II	[1M]
	Ε	What is the function of condenser used in refrigeration system?	L1	CO-III	[1M]
	F	What are the advantages of evaporators used in refrigeration system?	L2	CO-III	[1M]
	G	List out two type of vessels commonly used in refrigeration system.	L1	CO-IV	[1M]
	Н	What is the purpose of thermos-syphon receiver in a refrigeration system?	L3	CO-IV	[1M]
	Ι	Name the different type of energy sources.	L1	CO-V	[1M]
	J	What kind of insulation is used in refrigerators?	L4	CO-V	[1M]
		<u>PART-B (50 Marks)</u>			
		<u>SECTION-I</u>			
2	А	Explain various applications of refrigeration systems used in industries.	L3	CO-I	[5M]
	В	Distinguish between comfort air-conditioning and industrial air- conditioning.	L2	CO-I	[5M]
3	А	Discuss the areas where refrigeration systems required in	L1	CO-I	[5M]
	В	What are the basic requirements of air conditioning system used in industries?	L2	CO-I	[5M]
		<u>SECTION-II</u>			
4	А	Illustrate different type of compressors. Mention the fields for the use of each in refrigeration system.	L2	CO-II	[5M]
	В	Differentiate between reciprocating and screw	L1	CO-II	[5M]

compressors.

		OR			
5	A	Explain the working of reciprocating compressors.	L3	CO-II	[5M]
	В	Briefly explain oil injection and refrigeration injection	L2	CO-II	[5][1]
		systems.			
		<u>SECTION-III</u>			
6	А	Discuss various type of Condensers used in refrigeration systems.	L2	CO-III	[5M]
	В	What are the merits and demerits of air cooled	L3	CO-III	[5M]
		condensers over water cooled condensers. OR			
7	А	Describe different type of Evaporators used in refrigeration systems.	L4	CO-III	[5M]
	В	What problems does lubricating oil cause in evaporator?	L2	CO-III	[5M]
		<u>SECTION-IV</u>			
8	А	Explain Low pressure receivers and thermos syphon	L4	CO-IV	[5M]
		receiver.			
	В	Briefly discuss surge drum and surge line accumulator.	L1	CO-IV	[5M]
		OR			
9	А	Write a note on High pressure receivers.	L2	CO-IV	[5M]
	В	Discuss flash tank and liquid separator.	L3	CO-IV	[5M]
		<u>SECTION-V</u>			
10	А	List out and explain various type of insulating materials	L2	CO-V	[5M]
		used for air-conditioning system.			
	В	Explain insulation cost and energy cost used in	L5	CO-V	[5M]
		refrigeration systems.			
		OR			
11	А	Describe the construction methods of refrigerated	L2	CO-V	[5M]
		spaces.			
	В	Explain different methods of ice manufacturing	L3	CO-V	[5M]
		methods.			
